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Abstract

Chronic wounds are wounds which are detained in one or more phases of

normal wound healing. It is estimated that 1–2 % of the population of

developed countries will experience a chronic wound during their lifetime

and this number is expected to increase given the growing world popula-

tion, increase in age, body mass index and associated diseases such as

diabetes and cardiovascular diseases. Although several factors contribute

to wound healing, presence of bacterial biofilms significantly affects

healing and success of wound treatment. This indicates that wound-care

therapies should be directed towards targeting biofilms within chronic

wounds. Despite this, the role of biofilms in chronic wound pathogenesis

and the effect of wound-care therapies against biofilms within wounds are

not well understood. In order to address these issues, appropriate biofilm

models are necessary. To this end, several model systems mimicking the

conditions observed in a biofilm infected chronic wound have been

developed. In this review we present an overview of these different

in vitro and in vivo biofilm wound model systems and discuss their

advantages and disadvantages.
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1 Introduction

Chronic wounds are wounds which are detained

in one or more phases of normal wound healing

(Lazarus et al. 1994). Diabetic, arterial, venous

and pressure ulcers constitute the majority of

these wounds. Chronic wounds affect between

two and seven million of patients annually with
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treatment costs rising up to several billions of

dollars annually (Sen et al. 2009). It has been

estimated that 1–2 % of the population of devel-

oped countries will experience a chronic wound

during their lifetime and this number is expected

to increase given the growing world population,

increase in age, body mass index and associated

diseases such as diabetes and cardiovascular

diseases (Gottrup 2004). Although several

factors contribute to wound healing, bacterial

infections can significantly affect healing and

success of wound treatment (Robson 1997;

White and Cutting 2006; Wolcott et al. 2010b).

The moist environment and the constant supply

of nutrients within the wound represent the ideal

environment for bacterial growth. These bacteria

can come from different exogenous (e.g. soil and

water) as well as endogenous (e.g. skin, saliva,

urine, faeces) sources. However, the biodiversity

is suggested to be relatively low and Staphylo-

coccus aureus and Pseudomonas aeruginosa
seem to predominate in chronic wounds (Bowler

1998; Fazli et al. 2009; Gjodsbol et al. 2006;

Kirketerp-Moller et al. 2008; Rao and Lipsky

2007; Rhoads et al. 2012).

Increasing evidence suggest that these bacte-

ria reside within biofilms in these wounds

(Bjarnsholt et al. 2008; Burmølle et al. 2010;

Church et al. 2006; James et al. 2008). Biofilms

are sessile communities characterized by micro-

bial cells that are irreversibly attached to a sub-

stratum and/or to each other and are embedded in

a self-produced matrix of extracellular polymeric

substances and exhibit an altered phenotype

compared to planktonic cells (Costerton

et al. 1999). Bacteria living in these biofilms are

well protected against antimicrobial agents and

host defenses and are for that reason extremely

difficult to eradicate (Fux et al. 2003; Bjarnsholt

et al. 2008). Recent studies have shown that the

major reason for the failure of wound treatment

and the shift from acute towards a chronic wound

is the presence of bacterial biofilms within the

wounds (Harrison-Balestra et al. 2003;

Bjarnsholt et al. 2008; Davis et al. 2008;

Kirketerp-Møller 2008; Kirketerp-Møller and

Gottrup 2009). Only 6 % of acute wounds

contained biofilms while this was between

60 and 80 % for chronic wounds (James

et al. 2008). In addition, in a study of Dowd

et al. (2009) only wounds without detectable

biofilm showed signs of wound healing. This

indicates that wound-care therapies should be

directed towards targeting biofilms within

chronic wounds. Despite this, the role of biofilms

in chronic wound pathogenesis and the effect of

wound-care therapies against these biofilms are

not well understood. In order to address these

issues, appropriate biofilm models are necessary.

To this end, several model systems mimicking

the conditions observed in a biofilm infected

chronic wound have been developed. In this

review we present an overview of these different

in vitro and in vivo biofilm wound model systems

and discuss their advantages and disadvantages.

2 Static In Vitro Wound Models

Different biofilm models have been used to eval-

uate the effect of antimicrobial agents on

biofilms (see Coenye and Nelis 2010 for a gen-

eral overview of biofilm model systems). These

“general purpose models” can be used to evalu-

ate the efficacy of wound care products or to

evaluate biofilm formation of wound isolates.

However, most of these in vitro models do not

reflect the micro environmental conditions found

in the wound bed. For this reason, several

researchers have made specific adaptations to

these general static biofilm models trying to bet-

ter mimic wound-like environments in an easy-

to-handle in vitro setting. For example, static

biofilm models were developed in which biofilms

were grown on agar, poloxamer gels or cellulose

matrixes placed in petri-dishes (Clutterbuck

et al. 2007; Percival et al. 2007; Hammond

et al. 2011; Merritt et al. 2011; Kim and Izadjoo

2015) (Table 1). Although poloxamer gels are

polysaccharides, bacterial cultures growing on

this substrate mimic many of the properties of

biofilm-grown bacteria. Similarly, the permeable

nature of cellulose disks allows diffusion of

nutrients to the bacteria on the disk, just as

nutrients are supplied to biofilms in a wound.

As such, both set-ups have been used to evaluate
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the effect of silver containing dressings (Percival

et al. 2007, 2011), antibiotic ointments and

agents (Clutterbuck et al. 2007; Hammond

et al. 2011; Miller et al. 2014) and garlic

(Nidadavolu et al. 2012). In addition, Kostenko

et al. (2010) evaluated the efficacy of silver

containing dressings using an MBEC (“Minimal

biofilm eradication concentration”) device. This

set-up allows a non-destructive transfer of the

biofilms into fresh medium. Biofilms in this

device grow on pegs attached to the lid of the

device which were coated with serum. Although,

most of these general batch culture models have

the advantage of being simple and allowing high

throughput screening in a cost-effective manner

and although some adaptations have been made

to better reflect a wound environment, none of

them convincingly mimics the conditions

observed in an in vivo wound.

2.1 Lubbock Chronic Wound
Biofilm Model and Derived
Models

The first chronic wound model that truly

attempted to mimic wound like conditions was

developed at the medical biofilm research insti-

tute in Lubbock (Texas, US) and was therefore

named the “Lubbock chronic wound biofilm

model (LCWB)” (Table 1) (Sun et al. 2008).

This model allowed the rapid (24 h) cultivation

of a robust multispecies biofilm in which

P. aeruginosa, S. aureus and Enterococcus
faecalis are present in roughly equal ratios.

These bacteria were chosen since they are often

isolated from and co-occur in chronic wounds

(Sun et al. 2008; Gjodsbol et al. 2006). However,

the LCWB allows growth of several Gram nega-

tive and Gram positive bacteria, aerobes as well

Table 1 Overview of different static in vitro chronic wound models

Characteristics

Percival

et al. (2007)

Sun

et al. (2008)

Werthén

et al. (2010)

Kostenko

et al. (2010)

Hammond

et al. (2011)

Kucera

et al. (2014)

Designation Poloxamer

model

LBCW Collagen

wound model

MBEC

wound

model

Cellulose

agar model

Artificial

wound bed

model

Use of a

wound like

surface

No No/Yes Yes Yes No No

(Poloxamer

gel)

(plastic tip,

silicone

disk or host-

derived

matrix)

(Collagen

matrix)

(Serum

coated

pegs)

(Cellulose

disks)

(Plastic)

Use of a

wound like

medium

No Yes Yes No No Yes

(MH-agar) (Bolton

Broth, 50 %

bovine

plasma, 5 %

freeze-

thawed

lacked

horse-

blood)

(SWF: 50 %

fetal calf

serum and

50 %

physiological

(TSB) (LB-agar) (Bolton Broth,

1 % gelatine,

50 % porcine

plasma, 5 %

freeze-thawed

porcine

erythrocytes or

Bolton broth

+1 % gelatine

+1.2 % agar)

NaCl in

0.1 % Pepton

(PW) or a 1:1

TSB-SWF

solution)

Air-liquid

interface

Yes No Yes No Yes Yes

Flow present No No No No No No

Inoculum 105–106 CFU 104 CFU 104–105 CFU 107 CFU/ml 102–104 CFU 104 CFU

Incubation

temp

25–35 �C 37 �C 35–37 �C 37 �C 37 �C 37 �C
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as anaerobes (DeLeon et al. 2014; Dalton

et al. 2011). An inoculum of 104 cells was used

to represent a normal microbial load of a wound

prior to infection. Biofilms are grown in a

medium consisting of a chopped meat-based

medium (Bolton broth) with 50 % heparinized

bovine plasma and 5 % freeze-thaw laked horse

red blood cells. As such the medium presents the

major host factors (e.g. damaged tissue, red

blood cells and plasma) found in a typical

wound bed. A major downside of this model is

the fact that biofilms are formed using a plastic

tip or silicone disks as a substrate, which does not

reflect a wound-like surface (Sun et al. 2008;

Brackman et al. 2011). However, it was recently

shown that the medium coagulates into a jelly-

like mass when a coagulase-positive bacterial

species is used (such as S. aureus). S. aureus
secretes staphylocoagulase which binds to pro-

thrombin, forming a complex which converts

soluble fibrinogen to insoluble fibrin. As such

there is no need for using an artificial surface

since a host-derived matrix is formed which can

serve as a scaffold to which bacteria can adhere

and form biofilms (DeLeon et al. 2014). Another

encouraging aspect of this in vitro model is the

morphological similarity that is being observed,

both with the naked eye as well as on electron

micrographs, between biofilms grown in the

model and biofilms on actual chronic wounds.

As such, this model was shown to be a realistic

in vitromodel which is easy to handle and allows

rapid growth and maturation of a multispecies

biofilm in a cost effective manner. For this rea-

son, the LCWB has been used extensively to

study interspecies interactions (Dalton

et al. 2011; DeLeon et al. 2014) and to assess

the effect of antibiofilm compounds, antimicro-

bial agents, hydrogels, functionalized gauzes and

dressings against both single species biofilms and

polymicrobial communities (Garcia-Fernandez

et al. 2013; Luna-straffon et al. 2014; Douglas

et al. 2014; Sun et al. 2009; Dowd et al. 2009;

Brackman et al. 2011).

Since the first publication, several research

groups have made adaptations to the LCBW

model to address specific needs. The evaluation

of the effect is typically based on quantification

of the number of biofilm cells by plating or by

using quantitative qPCR methods, making it less

suitable for screening large amounts of

compounds. Recently, the LCWB was modified

for high throughput testing to address this need

(Brackman et al. 2013). A good correlation was

observed between the fluorescence from a fluo-

rescent S. aureus strain and the number of bio-

film cells present after treatment (Brackman

et al. 2013).

The LCWB model is often used to obtain

polymicrobial wound-like biofilms which are

then transplanted into other in vitro and/or

in vivo models of skin infection. For example,

Dalton et al. (2011) successfully transplanted a

biofilm cultured in the LCWB model into a

murine skin wound to induce in vivo formation

of wound biofilms. In addition, Kucera

et al. (2014) developed an artificial wound bed

model for assessment of solid antimicrobial

dressings based on the LCBW model. In brief,

the biofilm was pre-cultured using the LCBW

set-up with some modifications and amendments.

These included the addition of gelatin to the

wound medium and the use of porcine plasma

and freeze-thaw lacked porcine erythrocytes

instead of bovine plasma and horse blood. This

pre-cultured biofilm was then transferred onto an

artificial wound bed. This artificial wound bed

consists of a two-layer nutrient medium com-

posed of Bolton Broth supplemented with 1 %

gelatin (w/v) and 1.2 % agar (w/v). The use of the

artificial wound bed in the model enables to

mimic the situation in chronic infected wounds

where the biofilm is only in partial contact with

the wound dressing. The modified set-up also

incorporates an air-liquid interface feature

which is usually present in wound biofilms.

2.2 Collagen-Based In Vitro Wound
Models

In in vitro models, biofilms are often formed on

solid, artificial surfaces. This makes it difficult to

correlate the in vitro results with in vivo

observations, since the full contribution of the

surface to biofilm formation and biofilm
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persistence is often unknown. In addition, bacte-

ria in wounds are often not attached to well-

defined solid surfaces, but instead reside in the

wound bed. For this reason, a model system in

which sessile bacteria are aggregated in the

absence of a solid surface would mimic the

conditions in the wound more closely. To address

this issue, Werthén et al. (2010) developed an

in vitro wound model in which biofilms can

develop in the presence of simulated wound

fluid (containing 50 % fetal calf serum and

50 % physiological saline in 0.1 % peptone)

and a matrix of polymerized rat-tail collagen

type I but in the absence of a solid surface

(Table 1). Both P. aeruginosa and S. aureus
formed aggregates, surrounded by self-produced

polysaccharide matrix within the collagen matrix

(Werthén et al. 2010). In addition, biofilms

formed in this model were structurally similar

to biofilms observed in vivo, suggesting the pres-

ence of a “wound-like” environment (Werthén

et al. 2010). The deep penetration of

P. aeruginosa biofilms and the more surface-

oriented biofilms of S. aureus observed in this

model resembled other ex vivo observations

(Kirketerp-Moller et al. 2008). For this reason,

this model was used to better predict the in vivo
antimicrobial activity of antibiotics and silver-

containing wound-dressings in several studies

(Brackman et al. 2011; Hakonen et al. 2014).

3 In Vitro Chronic Wound Models
with Liquid Flow

Although the above mentioned biofilm models

aim to mimic in vivo wound-like environments,

all of them are based on closed and therefore

accumulative batch culture systems. For this rea-

son, some argue that it is unlikely that they will

fully represent the true dynamic state of the

wound environment. To address this issue sev-

eral in vitro wound models were developed in

which a fluid flow is present and/or in which the

biofilm is exposed to shear stress (Thorn and

Greenman 2009; Lipp et al. 2010; Hill

et al. 2010) (Table 2). The in vitro flat-bed perfu-

sion model (Thorn and Greenman 2009),

developed based on previously described static

models (Greenman et al. 2006; Thorn et al. 2007)

addresses this issue. This model consists of

autoclavable removable cassettes containing

microscope slides on which 1 cm2 cellulose

matrices are placed. A hyperdermic needle,

linked to a peristaltic pump was used to perfuse

growth medium through the removable cassettes.

The medium consists of 0.1 % heat-inactivated

foetal calf serum (FCS) or 2 % FCS + 0.1 %

glucose in phosphate buffered saline depending

on whether P. aeruginosa or S. aureus was used,
respectively (Thorn and Greenman 2009). This

model can be used to determine the antimicrobial

kill kinetic profile of topically applied treatments

(Thorn et al. 2009). In addition, a bioluminescent

target organism was integrated into the model

and shows the feasibility of using light produc-

tion for real-time monitoring of antimicrobial

efficacy (Thorn and Greenman 2009).

Similarly, Lipp et al. (2010) used a colony

drip-flow reactor (C/DFR) model to grow

P. aeruginosa and S. aureus biofilms under

wound-like conditions. This model was based

on characteristics of both the colony biofilm

model (Anderl et al. 2000) and the drip-flow

reactor (DFR) model (Buckingham-Meyer

et al. 2007). In the C/DFR, biofilms are grown

on semipermeable membranes which are placed

on microscope slides in a DFR apparatus. These

membranes are inoculated with approximately

104 CFU of a single species (P. aeruginosa or

S. aureus), left for 30 min to allow drying of the

inoculum after which medium (10 % TSB) was

pumped through the system (5 ml/h/channel) and

biofilms were allowed to form for up to 72 h at

room temperature (Lipp et al. 2010). Although

initially single species biofilms were grown,

growth of a polymicrobial biofilm consisting of

bacteria with variable oxygen requirements is

possible in this model (Woods et al. 2012). Inter-

esting is the fact that growth of a strict anaerobe

(C. perfringens) occurred in a polymicrobial bio-

film with P. aeruginosa and S. aureus in the

C/DFR, without establishing an artificial anaero-

bic environment (Woods et al. 2012). As such

this model was used to evaluate the effect of

antimicrobial agents (Agostinho et al. 2011) and
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wound dressings (Lipp et al. 2010) against mono-

and three-species biofilms (Woods et al. 2012).

Recently two different models were devel-

oped in which biofilms were first grown in a

flow-displacement model and then transferred

to an adapted novel in vitro wound-like set-up

(Ngo et al. 2012; Hill et al. 2010; Malic

et al. 2011). These two models are the constant

depth film fermenter (CDFF) and the Centers for

Disease Control (CDC) biofilm reactor. Both

models allow the generation of identical, multi-

ple biofilms simultaneously and allow to vary

key parameters including nutrient source, tem-

perature, oxygen availability and substrata

(Pratten and Wilson 1999). The reproducibility

of identical biofilms, the possibility to image

biofilms in three-dimensions and in real-time

makes these models interesting starting points

to make biofilms which can be implemented in

other models.

The CDFF consists of a glass chamber housing

a rotating stainless steel disc in which a total of

15 sampling pans, each containing five plugs, are

placed. The disc is placed at a set depth and

rotates while a scraper plate aids in the

distribution of medium across the plugs and

maintains a constant depth of the biofilm by

removing biofilm cells growing higher. Similarly,

the CDC reactor consists of a glass vessel with

eight removable polypropylene rods, each hold-

ing three removable coupons on which biofilms

can form (Donlan et al. 2004). These are oriented

in such a way that the coupon is perpendicular

to the rotating baffle (Buckingham-Meyer

et al. 2007). The glass chamber of both models

contains both entry and exit ports allowing a

continuous flow of fresh medium through the

system. Hill et al. (2010) used a constant depth

film fermentor (CDFF) to form multispecies

biofilms consisting of wound isolates. In brief,

biofilms were grown at 37 �C on plug inserts

into the CDFF placed at a 400 μm depth. BM

(Hill et al. 2010) or BHI (Malic et al. 2011)

medium was pumped through the system at a

rate of 30 ml/h. After biofilm formation, biofilms

were transferred to a moistened dressing in a

sterile petridish (Hill et al. 2010). This set-up

has been used to evaluate the effect of different

antibiotics, commercial dressings and anti-

biofilm compounds (Hill et al. 2010). In addition,

Table 2 Overview of different dynamic in vitro chronic wound models

Characteristics Thorn and Greenman (2009)

Lipp

et al. (2010)

Hill

et al. (2010)

Ngo

et al. (2012)

Terry and

Neethirajan

(2014)

Designation Flat-bed perfusion model C/DFR CDFF CDC-TNP

model

Microfluidic

wound model

Use of a

wound like

surface

No No Unclear No Yes

(Cellulose matrix) (Absorbant

pad)

(not

disclosed)

(Borosilicate

or Teflon)

(Collagen)

Use of a

wound like

medium

Yes No No No No

(Foetal calf serum (FCS) or

2 % FCS + 0.1 % glucose in

PBS)

(10 % TSB) (TSB or

BM)

(TSB or 10 %

TSB)

(TSB + 1 %

glucose)

Air-liquid

interface

Yes Yes Partlya Partlya Partlya

Flow present Yes Yes Yes Yes Yes

(1 ml/h) (5 ml/h) (30 ml/h) (11.7 ml/

min–40 ml/h)

(100–200 μl/
h)

Inoculum 105 CFU 104 CFU ND ND ND

Incubation

temp

37 �C RT

(21.5 �C)
37 �C 30–37 �C 35 �C

aAn air-liquid interface can be present at different stages (e.g. attachment step, biofilm formation step, evaluation of

antibacterial therapies), but not during the entire experiment

ND specific number of cells is not disclosed
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this model was further used to evaluate

co-aggregation, synergy and antagonism between

bacteria isolated from different types of wounds

(Hill et al. 2010; Malic et al. 2011). Similarly, a

CDC biofilm reactor was used to form single

species biofilms which are then placed in an

in vitro wound model (Ngo et al. 2012; Valente

et al. 2014). In brief, biofilms were grown in a

CDC biofilm reactor on borosilicate coupons at

30 �C using Trypton soy broth which was sup-

plied at a rate of 11.7 ml/min. After biofilm for-

mation, coupons were taken out of the CDC and

embedded into an agar base representing a low

nutrient and moist organic wound surface. A

major difference with the CDFF set-up was that

a constant flow of 1 % TSB at 40 ml/h was

provided across the agar surface by an intrave-

nous infusion (Ngo et al. 2012). This model is

mainly used to evaluate the effect of negative

pressure by itself or in combination with silver

impregnated foam dressings on wound biofilms

(Ngo et al. 2012; Valente et al. 2014).

4 Microfluidic Wound Models

A major downside of most of the above men-

tioned methods is the need for relatively large

amounts of test-compounds when evaluating

their efficacy in these models. Microfluidic-

based wound models can overcome this draw-

back (Zhang et al. 2013). Microfluidic technol-

ogy is a relatively new field that is already

applied to study biofilm growth in a confined

space (e.g. mimicking biofilm growth in a blood

vessel) (Sato et al. 2014), to study antimicrobial

resistance in biofilms by creating dynamic con-

centration gradients and/or to study spatial and

temporal growth of micro-organisms as well as

motility and chemotaxis in biofilms (Kim

et al. 2012; Halder et al. 2013). Although

differences between microfluidic devices exist,

the channels are typically 50–500 μm wide,

30–500 μm deep and 1–40 mm in length. In

addition, flow rates are usually low (0.1–50 μl/
min) (Coenye and Nelis 2010). Recently, a

“microfluidic wound model” was described

which is easy to use, relatively cheap and small

(Terry and Neethirajan 2014) (Table 2). In order

to better mimic wound like surfaces, the channels

were coated with rat tail collagen type I before

bacteria were pumped through the system (Terry

and Neethirajan 2014; Chen et al. 2014).

Although microfluidic wound models have

several advantages compared to other models

(e.g. use of a flow while only small amounts of

test product are needed) there is still room for

improvement on different other levels (e.g. use of

more relevant media, surfaces and mixed

biofilms). In this view it is interesting to note

that microfluidic co-culture models are being

developed in which biofilms can develop in the

presence of an epithelial cell monolayer (Kim

et al. 2010a, b; Zhang et al. 2013). Recently,

Zhang et al. (2013) developed a microfluidic

wound-scratch model system to investigate cell

migration and proliferation. Although this model

was not published in the context of infected

wound biofilms, it displays the possibility of

upgrading existing models to better emulate the

conditions observed in an infected in vivo

chronic wound.

5 Issues with the In Vitro Wound
Models

Although all of the above mentioned in vitro

models address specific aspects of wound

biofilms, they all are prone to limitations

(Tables 1 and 2). First of all, although some

models display flexibility in the use of different

bacterial species and/or mixed biofilm

communities, most of the in vitro wound models

only rely on the use of a single bacterial species.

As such it is unclear whether these models would

allow the incorporation of a biofilm consisting of

different bacterial species. Dominant single spe-

cies biofilm aggregates of S. aureus and

P. aeruginosa are observed in infected chronic

wounds and the outcome of wound healing can

be correlated with the presence of a specific

species. However, infected chronic wounds are

often polymicrobial in nature, despite the fact

that bacterial diversity is generally low (Robson

1997; Rao and Lipsky 2007; Colsky et al. 1998;
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Gjodsbol et al. 2006; Fazli et al. 2009; Rhoads

et al. 2012). For this reason, increasing the com-

plexity of the model by adding multiple species

could make the model system more relevant.

A second issue is the temperature used. Most

of these biofilms are formed and maintained at

37 �C which reflects core body temperature.

However, although skin temperature can be dif-

ferent due to variability between persons and

body location, temperature of trauma wounds

and wound bed temperature of chronic leg ulcers

ranges between 25–37 �C and 24–26 �C, respec-
tively (Fierheller and Sibbald 2010; Romanelli

et al. 2002). This temperature is significantly

lower than what is often used in the different

models, which would indicate that conducting

experiments at lower temperatures would better

reflect the chronic wound bed temperature.

A wide range of different inocula are also

being used in these models. These inocula range

between 102 and 108 CFU. It is generally

accepted that infected chronic wounds contain

more than 105 bacteria per gram of tissue

(Robson 1997; Bowler 2003). Although it is

highly questionable that high bioburden levels

are present at the start of infection under proper

standard care conditions, models applying these

higher inocula might be representative for

heavily infected wounds or wounds inflicted

under conditions were proper wound-care is not

directly possible. In addition, lower inocula can

be used for investigating biofilm development

from the start of an infection. As such the inocu-

lum used, should depend on the question that

needs to be answered and it should be clear

whether different inocula can be used in the

different model systems.

Thirdly, the surface and media used in some

models often do not reflect the nutritional

conditions which bacteria would find in wound

beds. Surfaces such as glass, silicone and plastics

do not resemble the surfaces on which biofilms

are formed in real wounds. In addition, although

some artificial surfaces (such as poloxamer gels

and cellulose disks) do possess some wound-like

features, it remains questionable whether these

would evoke similar responses in bacterial gene

expression, biofilm formation and resistance to

therapy as to biofilms grown on biotic surfaces.

As such, most of these in vitromodels do not take

into account the role that dermal substrates can

play on bacterial attachment, nutrition, biofilm

shape and resistance and for this reason these

models could be adapted at the level of the

surfaces used in order to better mimic wound

like conditions. Similarly, general media such

as TSB or LB support the growth of a wide

variety of microorganisms, but they do not con-

tain many of the components which are present

in wound exudates. Specific media such as the

simulated wound fluid (Werthén et al. 2010) or

media containing plasma, serum, blood cells

and/or heparin likely better reflect nutritional

conditions observed in wounds. However, to

date there is no standardized nutrient medium to

replicate wound exudates under in vitro
conditions and the composition of wound fluid

and wound exudates can be highly variable

depending individual, type of wounds and

wound healing stadium (Trengove et al. 1996,

1999; Cutting 2003; Eming et al. 2010). It thus

remains difficult to really define which media

would reflect wound conditions best.

Finally, as crucial is the expected geometry of

how nutrients are applied to the wound biofilm.

Although this might vary depending on the

wound type and amount of exudate produced,

nutrients generally originate from the host tissue

at the bottom of the biofilm, while oxygen is

usually supplied from the top of the biofilm at

the air-liquid/surface interface. In addition, the

physical aspect of a low fluid shear might be

important in specific wound types. Although

most of the in vitro wound model systems take

into account one or more of these aspects in order

to mimic in vivo wounds, none of them take into

account all these aspects (Tables 1 and 2).

6 Cell-Based Wound Models

Implementing skin as a substrate for attachment

and as the primary source of nutrition for micro-

bial biofilm cells would allow the formation of

biofilms under conditions which would more

closely resemble the in vivo situation. For this
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reason, several more advanced cell-based wound

models were developed in which porcine skin

explants (Yang et al. 2013; Phillips et al. 2013;

Wolcott et al. 2010a), two-dimensional cell

monolayers or three-dimensional tissue-

engineered human skin equivalents (TE-HSE)

(Haisma et al. 2013; Charles et al. 2009) were

used as a substrate for biofilm development.

Given the fact that pig skin and human skin

have striking similarities in structure

(Summerfield et al. 2014), cell-based wound

models using porcine skin explants have been

used to study molecular characteristics of

biofilms attaching to skin (Yang et al. 2013),

assess the efficacy of antimicrobial agents and

antimicrobial wound care dressings against

P. aeruginosa and S. aureus biofilms and assess

the effect of negative pressure wound therapy

with instillation of antimicrobial solutions

against P. aeruginosa biofilms (Phillips

et al. 2010, 2013). A main disadvantage is that

significant differences still exist between human

and animal skin at the level of immunological

responses (Summerfield et al. 2014). Despite

this, human explants have rarely been used

since it would be difficult to standardize and

reproduce results obtained in such models. The

development of reconstituted human tissue

models using two-dimensional cell monolayers

or three-dimensional tissue-engineered human

skin equivalents would overcome this issue.

Although monolayer cultured cells are often

used, such studies do not accurately reflect the

behavior, pathophysiology, or microenvironment

of skin in vivo (Welss et al. 2004). Cells in

monolayer culture are in isolation and for this

reason do not take into account that bacteria

invade and interact with different cell types in a

complex three-dimensional solid structure. For

this reason, three-dimensional systems would

better mimic in vivo infections. Tissue-

engineered human skin equivalents (HSE) are

three-dimensional systems that mimic the native

skin to a high degree (Welss et al. 2004).

Although different HSE are described in litera-

ture, they are typically generated by culturing

primary keratinocytes and dermal fibroblasts at

the air-liquid interface of cell-free matrices

(e.g. filters, collagen gels or decellularized der-

mal scaffolds such as de-epidermized dermis).

The cells will proliferate, migrate and differenti-

ate during peridermal development resulting in

skin equivalents that usually contain all layers of

the native epidermis and/ or dermis

(El Ghalbzouri et al. 2004, 2008; Charles

et al. 2009; Welss et al. 2004; Torkian

et al. 2004). In addition, several HSE are com-

mercially available. Epiderm-FT (MatTek, MA,

US) is a multilayered highly differentiated skin

model consisting of human-derived

keratinocytes and fibroblasts in cell culture

inserts. Apligraf is a tissue engineered skin

equivalent which consists of a lower dermal

layer (collagen and human fibroblasts) and an

upper epidermal layer (human keratinocytes

which can differentiate). In addition,

reconstructed human epidermis (RHE, Skinethic,

Lyon, France) consists of normal human

keratinocytes cultured on an inert polycarbonate

filter at the air-liquid interface, in a chemically

defined medium. The HSE is typically wounded

using a biopsy punch or a device heated or cooled

with boiling water or liquid nitrogen, respec-

tively, prior to infection (El Ghalbzouri

et al. 2004; Haisma et al. 2013; Shepherd

et al. 2009). Others have demonstrated that bac-

teria can colonize HSE and trigger the expression

of pro-inflammatory cytokines/chemokines by

the underlying cells (Holland et al. 2008, 2009;

De Breij et al. 2012; Haisma et al. 2013; Kirker

et al. 2009, 2012; Charles et al. 2009). In addi-

tion, HSE wound models were used to assess the

antimicrobial activity of different agents and

plasma against bacterial biofilms under wound

like conditions (Haisma et al. 2013; Shepherd

et al. 2009; Brackman et al. 2011).

Recently, Bellas et al. (2012) developed a

full-thickness skin equivalent which included

epidermis, dermis, and hypodermis. This model

would serve as a more physiological relevant

system that would likely sustain physiological

function for more extended time periods in

ways that would permit both acute, short-term,

and chronic, long-term studies of skin develop-

ment and pathogenesis. In addition, the morphol-

ogy and organization of the tri-layer skin model

In Vitro and In Vivo Biofilm Wound Models and Their Application



would allow secretion of appropriate levels of

cytokines and mimic the full spectrum of

biological functions of skin. The cell-based

models have the advantage that they are histolog-

ically similar to human skin and thereby provide

a controlled environment similar to the one

encountered in in vivo wounds. However, unlike

human skin, these usually do not contain

Langerhans’ cells, macrophages, lymphocytes

or other structures such as blood cells, hair

follicles or sweat glands.

7 In Vivo Wound Model Systems

To address the above mentioned issues, several

in vivo wound models were developed, each with

their own strengths and weaknesses (Seth

et al. 2012). These animal models are needed

since it is virtually impossible to study the devel-

opment of chronic wound in humans. This is due

to ethical concerns, but also due to the fact that

the chronic wound is often already present when

patients arrive in the clinic. In addition, when

these wounds are investigated, this will only be

observational thereby lacking the experimental

and causative data necessary to fully investigate

the role of biofilms and interplay with therapeu-

tically agents (Seth et al. 2012).

One of the first studied in vivo models of

wound infections relied on the use of Drosophila
melanogaster (reviewed by Apidianakis and

Rahme 2009). A wound infection in the cuticular

epithelium and underlying muscle is established

in this model by using a thoracic or abdominal

pin prick which was dipped in a bacterial suspen-

sion. As such, this model was used to study host

responses to wound infection by different

microbes. Despite being often used, the transla-

tion of results obtained in an invertebrate

pin-prick wound system to what could be

expected in human wounds is questionable. For

this reason, mostly vertebrate animals such as

mice, rats, pigs and rabbits are used in in vivo

wound model systems (Table 3). Next to the type

and breed of animal used, these models mainly

differ in the mechanisms by which wounds are

inflicted, how wounds (and infection) is being

maintained during the experiment, on the inocu-

lum size and whether or not different bacterial

species were shown to be capable of infecting the

host under the given circumstances.

Akiyama et al. (1996) described biofilm for-

mation of S. aureus in incisional wounds of mice

and this model was later on used to evaluate

topical treatment on biofilm susceptibility

(Akiyama et al. 2002). Similarly, Rumbaugh

et al. (1999) and later on Rashid et al. (2000)

examined the role of different genes (including

quorum sensing genes) on P. aeruginosa viru-

lence in a burn wound mouse infection model.

However, the effect of biofilm infection on the

global wound healing process or host responses

was not assessed. Similarly, several other murine

infection models are published in which wounds

are caused by thermal injury (Trøstrup

et al. 2013; Nichols et al. 2013). Although these

models can be useful to study burn wound

infections, they do not always represent

conditions found in chronic wounds which not

originated from burns. For this reason several

other models have focused on inflicting wounds

by other manners such as biopsy punch

(Thompson et al. 2014; Schierle et al. 2009;

Zhao et al. 2010; Petreaca et al. 2012; Gurjala

et al. 2011), surgical incision (Ermolaeva

et al. 2011; Asada et al. 2012; Watters

et al. 2014) or by means of sanding (Roche

et al. 2012a, b) or pressure (Nakagami

et al. 2008). Besides inflicting a wound,

maintaining a biofilm infection within these

models for a certain amount of time remains

challenging. For this reason several models rely

on specific preconditioned animals (e.g. mutant

breeds or induction of specific pathogenesis such

as diabetes), the pre-formation of the biofilm

under in vitro conditions before the biofilm is

applied to the wound bed and/or placement of

dressing materials to maintain a moist environ-

ment (Table 3). Most of the rodent models also

ignore the fact that contracture should be

minimized in these models. By minimizing

contractures, e.g. by placement of silicone rings

around the wound bed, wounds are allowed to

heal by new tissue ingrowth, more akin to human

wounds, as opposed to myofibroblast-mediated
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contraction of the loose rodent skin (Schierle

et al. 2009; Nguyen et al. 2013). Additionally,

only a limited amount of models study the infec-

tion for a longer period of time (Thompson

et al. 2014; Roy et al. 2014). Although the use

of mice and rats have some advantages over the

use of larger animals such as pigs (e.g. ease-of-

use, space-limitations, economical and ethical

concerns), pigs are preferred for wound healing

studies due to higher similarities between porcine

and human skin and due to the scale at which

wounds can be introduced (Sullivan et al. 2001;

Summerfield et al. 2014). In addition, with

respect to the translational value, the use of pigs

as preclinical model for wound studies is

recommended (Gordillo et al. 2013). Recently,

an in vivo biofilm wound infection model was

developed in rabbits (Gurjala et al. 2011). This

model was based on the rabbit dermal ulcer

model, which is an FDA-recognized model of

wound healing which has been used for over

two decades (Mustoe et al. 1991; Chen

et al. 1999; Said et al. 2005; Mogford

et al. 2009). In this model, full-thickness, circular

punch-wounds are made in the ears of

New Zealand White rabbits down to cartilage,

affording a number of important advantages. For

example, in contrast to partial-thickness wounds,

this removal of dermis more closely models the

dermal-loss seen in human chronic wounds.

Additionally, the majority of human wounds

heal through epithelialization and granulation,

in contrast to the contracture-based healing seen

in mice (Schierle et al. 2009). The underlying

cartilage of the rabbit ear serves as a natural

splint, preventing healing by contracture, and

thus allowing for accurate quantification of epi-

thelial and granulation tissue formation from the

periphery of the wound. Moreover, multiple

identical wounds can be made in one animal

with contralateral controls, creating a

standardized and high-throughput wound

model. In contrast to other published models

where pre-formed in vitro biofilm is directly

applied to wounds, these wounds are inoculated

with planktonic, free-floating bacteria which

more closely represents the seeding mechanism

of human chronic wounds, with the wound bed

itself playing a critical role in the transformation

of bacteria into the biofilm state (Schultz

et al. 2004; Cierny and DiPasquale 2006).

Although different in vivo models exist, the clin-

ical relevance of these models is still being

argued (Seth et al. 2012). These aspects should

be addressed in the future.

8 Concluding Remarks

Investigating wound infections and development

of novel therapeutic agents targeting these types

of infections require the existence of appropriate

models. As discussed in this review, several

in vitro and in vivo wound model systems have

been described, each with their specific strengths

and weaknesses and addressing different aspects

of wound biofilms. As such, researchers should

select a model by measuring out these

differences against the questions that they are

hoping to answer using these models. However,

due to the complexity of wound healing, extrap-

olation of results from in vitro biofilm studies to

the clinic will always remain challenging. Only

animal models can take into account factors such

as interplay of immune reponses and wound bed

components. In addition, in vivo animal models

are necessary, since it is virtually impossible to

study the development of chronic wound in

humans. For this reason, there is a wide consen-

sus that there is a high need for not only

conducting these experiments, but also for a fur-

ther development and improvement of the

existing models both in vitro as well as in vivo.

These modifications, including the introduction

of polymicrobial biofilms, more relevant media

and surfaces, would possibly lead to models

which are truly capable of evaluating therapies

under in vitro and in vivo settings. In addition,

better models would eventually lead to studies on

biochemical pathways (e.g. by use of mutants),

host response to infection and on the interplay

between different therapeutically agents and the

biofilms which would better reflect reality. This

would ultimately improve our understanding of

why chronic wounds develop and why they are

being maintained and altogether these insights

In Vitro and In Vivo Biofilm Wound Models and Their Application



could possibly lead to better therapies addressing

the issue of chronic wound infections in the

clinic in the future.
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